From iris.base_logic.lib Require Export invariants.
From iris.algebra Require Export sts.
From iris.proofmode Require Import tactics.
Set Default Proof Using "Type".
Class stsG Σ (sts : stsT) := StsG {
sts_inG :> inG Σ (stsR sts);
sts_inhabited :> Inhabited (sts.state sts);
Definition stsΣ (sts : stsT) : gFunctors := #[ GFunctor (stsR sts) ].
Instance subG_stsΣ Σ sts :
subG (stsΣ sts) Σ → Inhabited (sts.state sts) → stsG Σ sts.
Context `{stsG Σ sts} (γ : gname).
Definition sts_ownS (S : sts.states sts) (T : sts.tokens sts) : iProp Σ :=
Definition sts_own (s : sts.state sts) (T : sts.tokens sts) : iProp Σ :=
Definition sts_inv (φ : sts.state sts → iProp Σ) : iProp Σ :=
(∃ s, own γ (sts_auth s ∅) ∗ φ s)%I.
Definition sts_ctx `{!invG Σ} (N : namespace) (φ: sts.state sts → iProp Σ) : iProp Σ :=
Global Instance sts_inv_ne n :
Proper (pointwise_relation _ (dist n) ==> dist n) sts_inv.
Proof. solve_proper. Qed.
Global Instance sts_inv_proper :
Proper (pointwise_relation _ (≡) ==> (≡)) sts_inv.
Proof. solve_proper. Qed.
Global Instance sts_ownS_proper : Proper ((≡) ==> (≡) ==> (⊣⊢)) sts_ownS.
Proof. solve_proper. Qed.
Global Instance sts_own_proper s : Proper ((≡) ==> (⊣⊢)) (sts_own s).
Proof. solve_proper. Qed.
Global Instance sts_ctx_ne `{!invG Σ} n N :
Proper (pointwise_relation _ (dist n) ==> dist n) (sts_ctx N).
Proof. solve_proper. Qed.
Global Instance sts_ctx_proper `{!invG Σ} N :
Proper (pointwise_relation _ (≡) ==> (⊣⊢)) (sts_ctx N).
Proof. solve_proper. Qed.
Global Instance sts_ctx_persistent `{!invG Σ} N φ : Persistent (sts_ctx N φ).
Global Instance sts_own_persistent s : Persistent (sts_own s ∅).
Global Instance sts_ownS_persistent S : Persistent (sts_ownS S ∅).
Instance: Params (@sts_inv) 4.
Instance: Params (@sts_ownS) 4.
Instance: Params (@sts_own) 5.
Instance: Params (@sts_ctx) 6.
Context `{invG Σ, stsG Σ sts}.
Implicit Types φ : sts.state sts → iProp Σ.
Implicit Types N : namespace.
Implicit Types P Q R : iProp Σ.
Implicit Types γ : gname.
Implicit Types S : sts.states sts.
Implicit Types T : sts.tokens sts.
(* The same rule as implication does *not* hold, as could be shown using
Lemma sts_ownS_weaken γ S1 S2 T1 T2 :
T2 ⊆ T1 → S1 ⊆ S2 → sts.closed S2 T2 →
sts_ownS γ S1 T1 ==∗ sts_ownS γ S2 T2.
Proof. intros ???. by apply own_update, sts_update_frag. Qed.
Lemma sts_own_weaken γ s S T1 T2 :
T2 ⊆ T1 → s ∈ S → sts.closed S T2 →
sts_own γ s T1 ==∗ sts_ownS γ S T2.
Proof. intros ???. by apply own_update, sts_update_frag_up. Qed.
Lemma sts_own_weaken_state γ s1 s2 T :
sts.frame_steps T s2 s1 → sts.tok s2 ## T →
sts_own γ s1 T ==∗ sts_own γ s2 T.
intros ??. apply own_update, sts_update_frag_up; [|done..].
intros Hdisj. apply sts.closed_up. done.
Lemma sts_own_weaken_tok γ s T1 T2 :
T2 ⊆ T1 → sts_own γ s T1 ==∗ sts_own γ s T2.
intros ?. apply own_update, sts_update_frag_up; last done.
- intros. apply sts.closed_up. set_solver.
Lemma sts_ownS_op γ S1 S2 T1 T2 :
T1 ## T2 → sts.closed S1 T1 → sts.closed S2 T2 →
sts_ownS γ (S1 ∩ S2) (T1 ∪ T2) ⊣⊢ (sts_ownS γ S1 T1 ∗ sts_ownS γ S2 T2).
Proof. intros. by rewrite /sts_ownS -own_op sts_op_frag. Qed.
Lemma sts_own_op γ s T1 T2 :
T1 ## T2 → sts_own γ s (T1 ∪ T2) ==∗ sts_own γ s T1 ∗ sts_own γ s T2.
(* The other direction does not hold -- see sts.up_op. *)
intros. rewrite /sts_own -own_op. iIntros "Hown".
iDestruct (own_valid with "Hown") as %Hval%sts_frag_up_valid.
- iApply (sts_own_weaken with "Hown"); first done.
+ split; apply sts.elem_of_up.
+ eapply sts.closed_op; apply sts.closed_up; set_solver.
- apply sts.closed_up; set_solver.
- apply sts.closed_up; set_solver.
Typeclasses Opaque sts_own sts_ownS sts_inv sts_ctx.
Lemma sts_alloc φ E N s :
▷ φ s ={E}=∗ ∃ γ, sts_ctx γ N φ ∧ sts_own γ s (⊤ ∖ sts.tok s).
iIntros "Hφ". rewrite /sts_ctx /sts_own.
iMod (own_alloc (sts_auth s (⊤ ∖ sts.tok s))) as (γ) "Hγ".
{ apply sts_auth_valid; set_solver. }
iExists γ; iRevert "Hγ"; rewrite -sts_op_auth_frag_up; iIntros "[Hγ $]".
iMod (inv_alloc N _ (sts_inv γ φ) with "[Hφ Hγ]") as "#?"; auto.
rewrite /sts_inv. iNext. iExists s. by iFrame.
Lemma sts_accS φ E γ S T :
▷ sts_inv γ φ ∗ sts_ownS γ S T ={E}=∗ ∃ s,
⌜s ∈ S⌝ ∗ ▷ φ s ∗ ∀ s' T',
⌜sts.steps (s, T) (s', T')⌝ ∗ ▷ φ s' ={E}=∗ ▷ sts_inv γ φ ∗ sts_own γ s' T'.
iIntros "[Hinv Hγf]". rewrite /sts_ownS /sts_inv /sts_own.
iDestruct "Hinv" as (s) "[>Hγ Hφ]".
iDestruct (own_valid_2 with "Hγ Hγf") as %Hvalid.
assert (s ∈ S) by eauto using sts_auth_frag_valid_inv.
assert (✓ sts_frag S T) as [??] by eauto using cmra_valid_op_r.
iModIntro; iExists s; iSplit; [done|]; iFrame "Hφ".
iIntros (s' T') "[% Hφ]".
iMod (own_update_2 with "Hγ Hγf") as "Hγ".
{ rewrite sts_op_auth_frag; [|done..]. by apply sts_update_auth. }
iRevert "Hγ"; rewrite -sts_op_auth_frag_up; iIntros "[Hγ $]".
iModIntro. iNext. iExists s'; by iFrame.
Lemma sts_acc φ E γ s0 T :
▷ sts_inv γ φ ∗ sts_own γ s0 T ={E}=∗ ∃ s,
⌜sts.frame_steps T s0 s⌝ ∗ ▷ φ s ∗ ∀ s' T',
⌜sts.steps (s, T) (s', T')⌝ ∗ ▷ φ s' ={E}=∗ ▷ sts_inv γ φ ∗ sts_own γ s' T'.
Proof. by apply sts_accS. Qed.
Lemma sts_openS φ E N γ S T :
sts_ctx γ N φ ∗ sts_ownS γ S T ={E,E∖↑N}=∗ ∃ s,
⌜s ∈ S⌝ ∗ ▷ φ s ∗ ∀ s' T',
⌜sts.steps (s, T) (s', T')⌝ ∗ ▷ φ s' ={E∖↑N,E}=∗ sts_own γ s' T'.
iIntros (?) "[#? Hγf]". rewrite /sts_ctx. iInv N as "Hinv" "Hclose".
(* The following is essentially a very trivial composition of the accessors
[sts_acc] and [inv_open] -- but since we don't have any good support
for that currently, this gets more tedious than it should, with us having
to unpack and repack various proofs.
TODO: Make this mostly automatic, by supporting "opening accessors
iMod (sts_accS with "[Hinv Hγf]") as (s) "(?&?& HclSts)"; first by iFrame.
iModIntro. iExists s. iFrame. iIntros (s' T') "H".
iMod ("HclSts" $! s' T' with "H") as "(Hinv & ?)". by iMod ("Hclose" with "Hinv").
Lemma sts_open φ E N γ s0 T :
sts_ctx γ N φ ∗ sts_own γ s0 T ={E,E∖↑N}=∗ ∃ s,
⌜sts.frame_steps T s0 s⌝ ∗ ▷ φ s ∗ ∀ s' T',
⌜sts.steps (s, T) (s', T')⌝ ∗ ▷ φ s' ={E∖↑N,E}=∗ sts_own γ s' T'.
Proof. by apply sts_openS. Qed.
Typeclasses Opaque sts_own sts_ownS sts_inv sts_ctx.