Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
notation `Prop` := Type.{0}
notation [parsing_only] `Type'` := Type.{_+1}
notation [parsing_only] `Type₊` := Type.{_+1}
notation `Type₁` := Type.{1}
notation `Type₂` := Type.{2}
notation `Type₃` := Type.{3}
set_option structure.eta_thm true
set_option structure.proj_mk_thm true
inductive poly_unit.{l} : Type.{l} :=
inductive unit : Type₁ :=
inductive eq {A : Type} (a : A) : A → Prop :=
inductive heq {A : Type} (a : A) : Π {B : Type}, B → Prop :=
inductive prod (A B : Type) :=
definition prod.pr1 [reducible] [unfold 3] {A B : Type} (p : prod A B) : A :=
definition prod.pr2 [reducible] [unfold 3] {A B : Type} (p : prod A B) : B :=
inductive and (a b : Prop) : Prop :=
definition and.elim_left {a b : Prop} (H : and a b) : a :=
definition and.left := @and.elim_left
definition and.elim_right {a b : Prop} (H : and a b) : b :=
definition and.right := @and.elim_right
inductive sum (A B : Type) : Type :=
definition sum.intro_left [reducible] {A : Type} (B : Type) (a : A) : sum A B :=
definition sum.intro_right [reducible] (A : Type) {B : Type} (b : B) : sum A B :=
inductive or (a b : Prop) : Prop :=
definition or.intro_left {a : Prop} (b : Prop) (Ha : a) : or a b :=
definition or.intro_right (a : Prop) {b : Prop} (Hb : b) : or a b :=
structure sigma {A : Type} (B : A → Type) :=
mk :: (pr1 : A) (pr2 : B pr1)
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26
-- in an [priority n] flag.
inductive pos_num : Type :=
| bit1 : pos_num → pos_num
| bit0 : pos_num → pos_num
definition succ (a : pos_num) : pos_num :=
pos_num.rec_on a (bit0 one) (λn r, bit0 r) (λn r, bit1 n)
definition succ (a : num) : num :=
num.rec_on a (pos one) (λp, pos (succ p))
mk : bool → bool → bool → bool → bool → bool → bool → bool → char
inductive string : Type :=
| str : char → string → string
inductive option (A : Type) : Type :=
-- Remark: we manually generate the nat.rec_on, nat.induction_on, nat.cases_on and nat.no_confusion.
-- We do that because we want 0 instead of nat.zero in these eliminators.
set_option inductive.rec_on false
set_option inductive.cases_on false